Thermochemical Properties and Non-isothermal Decomposition Reaction Kinetics of *N*-Guanylurea Dinitramide (GUDN)

ZHAO, Feng-Qi^{a,b}(赵凤起) CHEN, Pei^b(陈沛) YUAN, Hong-An^a(袁宏安) GAO, Sheng-Li^{*,a}(高胜利) HU, Rong-Zu^{a,b}(胡荣祖) SHI, Qi-Zhen^a(史启祯)

^a Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Department of Chemistry, Northwest University, Xi'an, Shaanxi 710069, China

^b Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China

The constant-volume combustion energy, $\Delta_c U$ (GUDN, s, 298.15 K), enthalpy of solution in acetic ether, $\Delta_{sol}H_m^{\Theta}$ and kinetic behavior of the exothermic decomposition reaction of the title compound (GUDN) are determined by a precise rotating bomb calorimeter, a Calvet microcalorimeter and DSC, respectively. Its standard enthalpy of combustion, $\Delta_c H_m^{\Theta}$ (GUDN, s, 298.15 K), standard enthalpy of formation, $\Delta_f H_m^{\Theta}$ (GUDN, s, 298.15 K) and kinetic parameters of the exothermic main decomposition reaction in a temperature-programmed mode [the apparent activation energy (E_a) and pre-exponential factor (A)] are calculated. The values of $\Delta_c U$ (GUDN, s, 298.15 K), $\Delta_c H_m^{\Theta}$ (GUDN, s, 298.15 K), $\Delta_f H_m^{\Theta}$ (GUDN, s, 298.15 K) and $\Delta_{sol} H_m^{\Theta}$ of GUDN are (-7068.64 ± 2.37) J · g⁻¹, (-1467.66 ± 0.50) kJ · mol⁻¹, (-319.76 ± 0.58) kJ · mol⁻¹ and (165.737 ± 0.013) kJ · mol⁻¹, respectively. The kinetic model function in integral form and the value of E_a and A of the exothermic main decomposition reaction of GUDN are 220.20 kJ · mol⁻¹ and $10^{21.18}$ s⁻¹, respectively. The critical temperature of thermal explosion of GUDN is 217.6 °C

Keywords *N*-guanylurea dinitramide, combustion energy, standard enthalpy of formation, enthalpy of solution, thermal decomposition kinetics

Introduction

N-Guanylurea dinitramide (GUDN) is a new energetic oxidizer with higher energy and lower sensitivity. Its crystal density is $1.755 \text{ g} \cdot \text{cm}^{-3}$. The detonation velocity is about 8210 m $\cdot \text{s}^{-1}$. Its specific impulse and pressure exponent are 213.1 s and 0.73, respectively. It has the potential for possible use as an energy ingredient of propellants and explosives from the point of view of the above-mentioned high performance. Its preparation,¹ properties² and hygroscopocity² have been reported. In the present work, we report its combustion energy, standard combustion enthalpy, standard enthalpy of formation, enthalpy of solution in acetic ether, kinetic model function and kinetic parameters of the exothermic main decomposition reaction studied by using DSC. This is quite useful in the evaluation of its thermochemical properties and thermal stability under non-isothermal condition and in the study of its thermal changes at high temperature.

Experimental

Materials

According to the method reported in the literature¹

N-Guanylurea dinitramide was prepared. It is pale yellow crystal. m.p. 214 °C (dec.); UV-vis (H₂O) λ_{max} : 282.5, 212.0 nm; IR (KBr) *v*: 1743 (—C(NH)—), 1688 (—C(O)—), 1523, 1444 (—NO₂). Anal. calcd for C₂H₇O₅N₇: C 11.48, H 3.34, N 46.89; found C 11.14, H 3.34, N 46.99. The analytical results show that it has the composition of C₂H₇O₅N₇. Acetic ether (A.R., Xi'an Chemical Com.) was used.

Apparatus and experimental conditions

The constant-volume combustion energy of GUDN was determined by a precise rotating bomb calorimeter (RBC-type II).³ The main experimental procedures were described previously.³ The initial temperature was regulated to (25.0000 ± 0.0005) °C, and the initial oxygen pressure was 2.5 MPa.

The correct value of the heat exchange was calculated according to Linio-Pyfengdelel-Wsava formula.⁴

The calorimeter was calibrated with benzoic acid of 99.999% purity. It had an isothermal heat of combustion at 25 °C of (-26434 ± 3) J • g⁻¹. The energy equivalent of calorimeter was determined to be (17936.01 ± 9.08) kJ • K⁻¹. The precision of the measurements was 4.68×10^{-4} .

^{*} E-mail: gaoshli@nwu.edu.cn Received May 19, 2003; revised and accepted October 17, 2003.

Project supported by the Science and Technology Foundation of Shaanxi Key Laboratory of Physico-Inorganic Chemistry (No. 29-3, 2001), the Science and Technology Foundation of the National Defence Key Laboratory of Propellant and Explosive Combustion of China (No. 514550101) and Postgraduate Foundation.

N-Guanylurea dinitramide

The analytical methods for final products (gas, liquid and solid) were the same as those in Ref. 2. The analytical results of the final products show that the combustion reactions were complete. As a result, either carbon deposits or carbon monoxide formed during the combustion reactions and the amount of NO_x in the final gas phase were negligible.

The enthalpy of solution of GUND was determined by the RD496-III type microcalorimeter.⁵ The microcalorimeter was made in Engineering Physical Institute of China, which was equipped with two 15 mL vessels. The microcalorimeter was calibrated by Joule effect and its sensitivity was $(63.994 \pm 0.042) \ \mu\text{V} \cdot \text{mW}^{-1}$ at 298.15 K. The experimental precision and accuracy were checked by measurement of the enthalpy of solution of crystalline KCl with special purity in deionized water at 298.15 K. The molar ratio of H₂O to KCl was 2000. The experimental value of $\Delta_{sol}H_m^{\Theta}$ [(17.238 ± 0.048) kJ · mol⁻¹] was good agreement with that reported in the literature [(17.241 ± 0.018) kJ •mol⁻¹],⁶ indicating that the device used in this work was reliable. The precision of the measurements was 0.5%.

The thermal decomposition process of GUDN under the condition of flowing N₂ gas was studied on a TG-DTG and DSC apparatus (TA, USA). The conditions of TG-DTG were as follows: sample mass, *ca*. 0.5 mg; heating rate, 10 °C • min⁻¹; atmosphere, a flowing rate of N₂ gas of 120 mL • min⁻¹; reference, α -Al₂O₃. The conditions of DSC were as follows: sample mass, *ca*. 1 mg; heating rates, 2.5, 5, 10 and 15 °C • min⁻¹, respectively; atmosphere, a flowing rate of N₂ gas of 60 mL • min⁻¹; reference, α -Al₂O₃.

Results and discussion

Combustion energy of GUND

The determination method of combustion energy for GUDN was the same as that for the calibration of the calorimeter with benzoic acid. The combustion energies of the samples were calculated by the formula Chin. J. Chem., 2004, Vol. 22, No. 2 137

$$\Delta_{\rm c} U(\text{GUDN, s}) = \frac{W \Delta T - aG - 5.983b}{m} \tag{1}$$

where $\Delta_c U$ (GUDN, s) denotes the constant-volume combustion energy of the samples, W is the energy equivalent of the RBC-type II calorimeter (in J • K⁻¹), ΔT the correct value of the temperature rising, a the length of actual Ni-Cr wire consumed (in cm), G the combustion enthalpy of Ni-Cr wire for ignition (0.9 J • cm⁻¹), 5.983 the formation enthalpy and solution enthalpy of nitric acid corresponding to 1 mL of 0.1000 mol • L⁻¹ NaOH (in J • mL⁻¹), b the volume in mL of consumed 0.1000 mol • L⁻¹ NaOH and m the mass in g of the sample. The results of the calculations were given in Table 1.

Standard combustion enthalpy of GUDN

The standard combustion enthalpy of GUDN, $\Delta_c H_m^{\Theta}$ (GUDN, s, 298.15 K), is referred to the combustion enthalpy change of the following ideal combustion reaction at 298.15 K and 100 kPa.

$$C_{2}H_{7}O_{5}N_{7}(s) + \frac{5}{4}O_{2}(g) \rightarrow 2CO_{2}(g) + \frac{7}{2}H_{2}O(l) + \frac{7}{2}N_{2}(g)$$
(2)

The standard combustion enthalpy of GUND calculated by the following equations:

$\Delta_{\rm c} H_{\rm m}^{\Theta}$ (GUDN, s, 298.15 K)= $\Delta_{\rm c} U$ (GUDN, s	s, 298.15 K)
$\pm \Delta nRT$	(3)

$$\Delta n = n_{\rm g}(\text{products}) - n_{\rm g}(\text{reactants}) \tag{4}$$

where n_g is the total amount in mole of gases present as products or as reactants, $R=8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$, T=298.15 K. The result is $(-1467.66\pm0.50) \text{ kJ} \cdot \text{mol}^{-1}$.

Standard enthalpy of formation of GUDN

The standard enthalpy of formation of GUDN, $\Delta_{\rm f} H_{\rm m}^{\Theta}$ (GUDN, s, 298.15 K), were calculated by Hess's law according to the above thermochemical equation (2):

$$\Delta_{f}H_{m}^{\Theta}[GUDN, s, 298.15 \text{ K}] = [2\Delta_{f}H_{m}^{\Theta}(CO_{2}, g, 298.15 \text{ K}) + \frac{7}{2}\Delta_{f}H_{m}^{\Theta}(H_{2}O, I, 298.15 \text{ K})] - \Delta_{c}H_{m}^{\Theta}(GUDN, s, 298.15 \text{ K})$$

No.	Mass of sample <i>m</i> /g	Calibrated heat of combustion wire Q_c/J	Calibrated heat of acid $Q_{\rm N}/{ m J}$	Calibrated Δ <i>T</i> /K	Combustion energy of sample $-\Delta_c U/(J \cdot g^{-1})$
1	1.04582	12.60	38.77	0.4130	7059.46
2	1.04640	12.60	38.79	0.4138	7069.29
3	1.03725	11.70	38.45	0.4105	7075.58
4	1.03247	9.00	38.27	0.4082	7071.02
5	1.04535	12.60	38.75	0.4131	7064.37
6	1.04624	12.60	38.78	0.4139	7072.10
mean					7068.64 ± 2.37

 Table 1
 Experimental results for the combustion energies of the samples

when $\Delta_{f} H^{\Theta}_{m}$ (CO₂, g, 298.15 K) = (-293.51 ± 0.13) kJ • mol⁻¹, $\Delta_{f} H^{\Theta}_{m}$ (H₂O, l, 298.15 K) = (-285.83 ± 0.042) kJ • mol^{-1,7} The result is (-319.76 ± 0.58) kJ • mol⁻¹.

Enthalpy of solution of GUDN in acetic ether

The dissolution process of GUDN can be expressed as follows:

$$C_2H_7O_5N_7(s) \xrightarrow{\text{acetic ether}} C_2H_7O_5N_7 \cdot \text{acetic ether(l)}$$
(5)

The experimental results of the enthalpy of solution of GUDN in acetic ether $(1 \div 5000)$ determined at 298.15 K were shown in Table 2. Obviously, the solution reaction is endothermic.

Table 2 Enthalpy of solution of GUDN in acetic ether (298.15K)

No.	Mass <i>m</i> /g	Heat of solution <i>Q</i> /mJ	$\Delta_{\rm sol} H_{\rm m}^{\Theta} / (\rm kJ \bullet \rm mol^{-1})$
1	3.35	2710.056	169.174
2	3.47	2718.341	163.323
3	3.48	2720.022	163.345
4	3.42	2715.442	166.040
5	3.38	2712.782	167.841
6	3.45	2717.077	164.696
mean			165.737 ± 0.013

Kinetic parameters of the thermal decomposition reaction of GUDN

Typical TG-DTG and DSC curves of GUDN are shown in Figures 1 and 2. The TG curve consisted of two-stage mass loss process. The first-stage began at about 191 °C and completed at 239 °C accompanied with 64.36% mass loss, and the second-stage completed at about 510 °C accompanied with 34.49% mass loss. It indicates that the decomposition of GUDN is much more complete. DSC curve shows one exothermic peak before 250 °C.

In order to obtain the kinetic parameters [apparent activation energy (E_a) and pre-exponential factor (A)] of the exothermic decomposition reaction for GUDN, a multiple heating method⁸ (Kissinger's method) was employed. From the original data in Table 3, E_k was determined to be 237.7 kJ • mol⁻¹ and $A \ 10^{23.43} \text{ s}^{-1}$. The linear correlation coefficient (r_k) is 0.9531. The values of

Table 3 Maximum peak temperature (T_p) of the exothermic decomposition reaction for GUDN determined by the DSC curves at various heating rates (β)

	3			
$\beta/(^{\circ}C \cdot min^{-1})$	2.5	5	10	15
T _p /°C	209.06	217.86	219.17	223.61

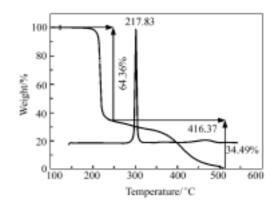
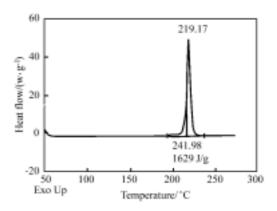



Figure 1 TG-DTG curve of GUDN at a heating rate of 10 $^{\circ}C \cdot min^{-1}$.

Figure 2 DSC curve of GUDN at a heating rate of 10 $^{\circ}$ C • min⁻¹.

 E_0 and r_0 obtained by Ozawa's method,⁹ are 233.8 kJ • mol⁻¹ and 0.9559, respectively.

The integral Eqs. (6)—(8) are cited for the calculation of the values of E_a , A and the most probable kinetic model function $[f(\alpha)]$ from a single non-isothermal DSC curve.¹⁰

$$\lg[G(\alpha)] = \lg\left(\frac{AE_{a}}{\beta R}\right) - 2.315 - 0.4567 \frac{E_{a}}{RT}$$
(6)

$$\ln\left[\frac{G(\alpha)}{T^{2}\left(1-\frac{2RT}{E_{a}}\right)}\right] = \ln\left(\frac{AR}{\beta E_{a}}\right) - \frac{E_{a}}{RT}$$
(7)

$$lg[G(\alpha)] = lg\left(\frac{AE_{a}}{\beta R}\right) - 0.4828E_{a}^{0.4357} - \frac{0.449 + 0.217E_{a}}{0.001}\frac{1}{T}$$
(8)

where $G(\alpha)$ is the integral model function, respectively, *R* the gas constant, α the conversion degree ($\alpha = H_t/H_o$), dH_t/dt the exothermic heat flow at time *t*, H_o the total heat effect (corresponding to the global area under the DSC curve), H_t the reaction heat at a certain time (corresponding to the partial area under the DSC curve), T the temperature (K) at time t.

Forty-one types of kinetic model function¹¹ and the data in Tables (4)—(7) are put into Eqs. (6)—(8) for calculation, respectively. The values of E_a , A, linear correlation coefficient (r), standard mean square deviation (Q) and believable factor (d) [where $d=(1-\alpha)Q$] were obtained by the linear least-squares method.¹⁰

 Table 4
 Data of GUDN determined by DSC^a

14			acterimitea	<i>by</i> b be
Data point	$T_{\rm i}/{ m K}$	$\alpha_{\rm i}$	$(dH_i/dt)_i/$ (mJ • s ⁻¹)	$(d\alpha/dT)_i \cdot 10^{-3}/K^{-1}$
1	455.15	0.0001	0.0103	0.2450
2	457.15	0.0004	0.0165	0.3924
3	459.15	0.0011	0.0289	0.6867
4	461.15	0.0022	0.0407	0.9646
5	463.15	0.0038	0.0558	1.320
6	465.15	0.0062	0.0765	1.810
7	467.15	0.0096	0.1075	2.550
8	469.15	0.0187	0.2239	5.310
9	471.15	0.0287	0.2453	5.820
10	473.15	0.0413	0.3583	8.500
11	475.15	0.0614	0.5836	13.85
12	477.15	0.0973	1.0866	25.78
13	479.15	0.1702	2.4101	57.19
14	481.15	0.3381	6.9782	165.6
15	483.15	0.7955	1.1493	158.7
16	485.15	0.9694	0.2232	27.27
17	487.15	0.9945	0.0834	5.300
18	489.15	0.9985	0.0641	1.980
19	491.15	0.9994	0.0593	1.520
20	493.15	0.9997	0.0001	1.410
$a_{T_0} = 393.14$	$5 \text{ K}: H_0 =$	=1011.4 mJ; β	=0.04167 °	C • s ^{−1} .

^{*a*} $T_0 = 393.15 \text{ K}; H_0 = 1011.4 \text{ mJ}; \beta = 0.04167 \text{ °C} \cdot \text{s}^{-1}.$

The probable kinetic model function of the integral methods selected by the logical choice method¹² and satisfying the ordinary range of the thermal decomposition kinetic parameters for energetic materials ($E = 80-250 \text{ kJ} \cdot \text{mol}^{-1}$, log $A=7-30 \text{ s}^{-1}$) is $G(\alpha) = \alpha^{1/2}$, indicating that the reaction mechanism of the exothermic process of GUDN is according with the Mampel Power principle, and the mechanism function is No. 24, the Mampel Power equation with n=1/2. Substituting $f(\alpha)$ with $2\alpha^{1/2}$, E with 220.20 kJ $\cdot \text{mol}^{-1}$, $\beta=0.1667 \text{ K} \cdot \text{s}^{-1}$ and A with $10^{21.18} \text{ s}^{-1}$ in Eq. (9),

$$d\alpha/dT = \frac{A}{\beta} f(\alpha) e^{-E/RT}$$
(9)

we can now establish the kinetic equation of the exothermic decomposition process of GUDN as follows:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}T} = 1.1998 \quad 10^{22.18} \alpha^{1/2} \mathrm{e}^{-2.648 \times 10^{4/2}}$$

The corresponding kinetic parameters are summarized in Table 8.

The value (T_{p0}) of the peak temperature (T_p) corresponding to $\beta \rightarrow 0$ obtained by Eq. (10) taken from Ref. 11 is 205.1 °C.

$$T_{\rm pi} = T_{\rm po} + b\beta_{\rm i} + c\beta_{\rm i}^2, i = 1, 2, 3, 4$$
 (10)

where *b* and *c* are coefficients.

The critical temperature of thermal explosion (T_b) obtained from Eq. (11) taken from Ref. 12 is 217.6 °C.

$$T_{\rm b} = \frac{E_0 - \sqrt{E_0^2 - 4E_0 R T_{\rm po}}}{2R} \tag{11}$$

where *R* is the gas constant (8.314 J •mol⁻¹ •K⁻¹), E_0 is the value of *E* obtained by Ozawa's method.

Table 5Data of GUDN determined by DSC^a

Data point	$T_{\rm i}/{ m K}$	α_{i}	$(dH_i/dt)_i/$ (mJ • s ⁻¹)	$(d\alpha/dT)_{i} \cdot 10^{-3}/K^{-1}$			
			(IIIJ S)	K			
1	459.15	0.0000	0.3659	0.0048			
2	461.15	0.0003	0.3730	0.0049			
3	463.15	0.0008	0.3872	0.0051			
4	465.15	0.0016	0.4016	0.0053			
5	467.15	0.0027	0.4196	0.0055			
6	469.15	0.0047	0.4481	0.0059			
7	471.15	0.0070	0.4857	0.0064			
8	473.15	0.0108	0.5424	0.0071			
9	475.15	0.0162	0.6340	0.0083			
10	477.15	0.0251	0.8094	0.0106			
11	479.15	0.0402	1.610	0.0152			
12	471.15	0.0699	2.100	0.0275			
13	483.15	0.1396	5.111	0.0668			
14	485.15	0.2978	16.40	0.2144			
15	487.15	0.7816	10.40	0.1359			
16	489.15	0.9525	2.691	0.0352			
17	491.15	0.9880	0.9829	0.0129			
18	493.15	0.9966	0.5410	0.0071			
19	495.15	0.9989	0.4326	0.0057			
20	497.15	0.9996	0.4054	0.0053			
21	499.15	0.9998	0.3959	0.0052			
22	501.15	0.9999	0.3977	0.0052			
23	503.15	1.0000	0.3951	0.0052			

^{*a*} T_{o} =443.15 K; H_{o} =917.76 mJ; β =0.08333 °C • s⁻¹.

140 Chin. J. Chem., 2004, Vol. 22, No. 2

Table 6Data of GUDN determined by DSC^a

Table 7Data of GUDN determined by DSC^a

ZHAO et al.

Data point	$T_{\rm i}/{ m K}$	α_{i}	$(dH_i/dt)_i/(mJ \cdot s^{-1})$	$\frac{(\mathrm{d}\alpha/\mathrm{d}T)_{\mathrm{i}}\bullet10^{-3}}{\mathrm{K}^{-1}}$	Data point	$T_{\rm i}/{ m K}$	a _i	$(dH_i/dt)_i/(mJ \cdot s^{-1})$	$(d\alpha/dT)_{i} \cdot 10^{-3}/K^{-1}$
1	467.15	0.0000	0.0724	0.4457	1	473.15	0.0000	0.0156	0.0000
2	469.15	0.0001	0.0867	0.5341	2	475.15	0.0001	0.0468	0.0002
3	471.15	0.0004	0.1088	0.6704	3	477.15	0.0004	0.1127	0.0006
4	473.15	0.0010	0.1417	0.8730	4	479.15	0.0011	0.2026	0.0010
5	475.15	0.0021	0.1902	1.171	5	481.15	0.0021	0.3248	0.0016
6	477.15	0.0037	0.2619	1.613	6	483.15	0.0038	0.4962	0.0024
7	479.15	0.0066	0.3881	2.390	7	485.15	0.0065	0.7827	0.0038
8	481.15	0.0117	0.6584	4.055	8	487.15	0.0108	1.346	0.0066
9	483.15	0.0216	1.250	7.698	9	489.15	0.0190	2.739	0.0134
10	485.15	0.0420	2.571	15.84	10	491.15	0.0374	7.049	0.0344
11	487.15	0.0837	5.280	32.52	11	493.15	0.0827	22.40	0.1094
12	489.15	0.1619	10.88	67.02	12	495.15	0.1837	61.74	0.3014
13	491.15	0.2916	24.60	151.5	13	497.15	0.4256	76.77	0.3748
14	493.15	0.6007	25.74	158.5	14	499.15	0.7838	37.53	0.1832
15	495.15	0.8867	8.086	49.80	15	501.15	0.9239	14.48	0.0707
16	497.15	0.9586	2.983	18.38	16	503.05	0.9714	5.937	0.0290
17	499.15	0.9829	1.256	7.737	17	505.15	0.9893	2.400	0.0117
18	501.15	0.9925	0.6080	3.745	18	507.15	0.9962	0.9649	0.0047
19	503.15	0.9966	0.3419	2.106	19	509.15	0.9987	0.3943	0.0019
20	505.15	0.9985	0.2296	1.414	20	511.15	0.9996	0.1786	0.0009
21	507.15	0.9994	0.1788	1.101	21	513.15	0.9999	0.0989	0.0005
22	509.15	0.9997	0.1573	0.9687	22	515.15	1.0000	0.0743	0.0004
23	511.15	0.9999	0.1435	0.8840	$a T_{o} = 469.15$	$5 \text{ K}; H_0 = 8$	19.37 mJ; <i>þ</i>	B=0.25 ℃ • s	s^{-1} .

^{*a*} $T_0 = 453.15 \text{ K}; H_0 = 974.14 \text{ mJ}; \beta = 0.16667 \text{ }^{\circ}\text{C} \cdot \text{s}^{-1}.$

^{*u*} T_0 = 469.15 K; H_0 = 819.37 mJ; β=0.25 °C • s⁻¹.

 Table 8
 Kinetic parameters obtained by the data in Table 2

No.	β	Equation	Function No. ^a	$E_{\rm a}/({\rm kJ} \cdot {\rm mol}^{-1})$	$\log\left(A/\mathrm{s}^{-1}\right)$	r	Q	$d \cdot 10^2$
1	2.5	(6)	24	212.46	20.46	0.9812	0.278	52.24
2		(7)	24	215.54	20.76	0.9798	1.478	2.99
3		(8)	24	216.36	20.83	0.9812	0.278	0.522
4	5	(6)	24	198.20	18.85	0.9663	0.638	2.149
5		(7)	24	200.43	19.08	0.9636	3.391	12.34
6		(8)	24	201.25	19.14	0.9663	0.638	2.149
7	10	(6)	24	222.74	21.48	0.9427	1.331	7.633
8		(7)	24	226.11	21.80	0.9387	7.074	42.35
9		(8)	24	227.27	21.91	0.9426	1.331	7.633
10	15	(6)	24	237.56	23.01	0.9534	1.016	4.739
11		(7)	24	241.60	23.37	0.9503	5.401	26.85
12		(8)	24	242.93	23.52	0.9534	1.016	4.739
			mean: E_a =	220.20 kJ • mol ^{-1} log (A	$1/s^{-1}$)=21.18			

^{*a*} Function No. 24: $f(\alpha) = 2\alpha^{1/2}$, $G(\alpha) = \alpha^{1/2}$.

N-Guanylurea dinitramide

Conclusions

The constant-volume combustion energy, standard enthalpy of combustion and enthalpy of solution in acetic ether of GUDN are determined by a precise rotating bomb calorimeter and Calvet microcalorimeter, respectively. They are (-7068.64 ± 0.50) J • g⁻¹ and (165.737 ±0.013) kJ • mol⁻¹, respectively. The standard enthalpy of combustion and standard enthalpy of formation are calculated to be (-1467.66 ± 0.50) kJ • mol⁻¹ and (-319.76 ± 0.58) kJ • mol⁻¹. The kinetic model function in integral form, apparent activation energy and pre-exponential factor of the exothermic main decomposition reaction for GUDN are $\alpha^{0.5}$, 220.20 kJ • mol⁻¹ and $10^{21.18}$ s⁻¹, respectively. The critical temperature of thermal explosion of GUDN is 217.6 °C.

References

 Bemm, U. D.; östmark, H. D.; Bergman, H.; Langlet, A. *Insensitive Munitions and Energetic Materials Technology Symposium*, Eds: San Diego Paradise Pont Resort, Strenth Therough Industry and Technology, **1998**, pVB-4-1—VB-4 Chin. J. Chem., 2004, Vol. 22, No. 2 141

—11.

- 2 Wang, B. Z.; Liu, Q.; Zhang, Z. Z.; Ji, Y. P.; Zhu, C. H. The Study on Properties of GUDN, Proceedings of Symposium on Propellants, Explosives and Insensitive Munitions, Eds: Institute of Chemical Material, China Academy of Engineering Physics, Editorial Board of Energetic Materials, Shuguang Press, Mianyang, 2002, pp. 188–191.
- 3 Yang, X. W.; Chen, S. P.; Gao, S. L. Instrum. Sci. Technol. 2002, 30, 311.
- 4 Popov, M. M. *Thermometry and Calorimetry*, Moscow University Publishing House, Moscow, **1954**, p. 382.
- 5 Ji, M.; Liu, M. Y.; Gao, S. L. Instrum. Sci. Technol. 2001, 29, 53.
- 6 Marthada, V. K. J. Res. NBS Standards 1980, 85, 467.
- 7 Cox. J. D. J. Chem. Thermodyn. 1978, 10, 903.
- 8 Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
- 9 Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881.
- 10 Hu, R. Z.; Yang, Z. Q.; Liang, Y. J. *Thermochim. Acta* **1988**, *123*, 135.
- 11 Hu, R. Z.; Shi, Q. Z. *Thermal Analysis Kinetics*, Science Press, Beijing, 2001, p. 127 (in Chinese).
- 12 Zhang, T. L.; Hu, R. Z.; Xie, Y.; Li, F. P. *Thermochim. Acta* **1994**, *244*, 171.

(E0305195 ZHAO, X. J.)